Remarks on a theorem of Cupit-Foutou and Zaffran

There is a well-known class of compact, complex, non-K\"ahl\-erian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2020, 35(2), , pp.591-602
1. Verfasser: 김진홍
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a well-known class of compact, complex, non-K\"ahl\-erian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular holomorphic foliation $\mathcal{F}$. Moreover, later Meersseman showed that if an LVMB manifold is actually an LVM manifold, then the regular holomorphic foliation $\mathcal{F}$ is actually transverse K\" ahler. The aim of this paper is to deal with a converse question and to give a simple and new proof of a well-known result of Cupit-Foutou and Zaffran. That is, we show that, when the holomorphic foliation $\mathcal{F}$ on an LVMB manifold $N$ is transverse K\" ahler with respect to a basic and transverse K\" ahler form and the leaf space $N/\mathcal{F}$ is an orbifold, $N/\mathcal{F}$ is projective, and thus $N$ is actually an LVM manifold. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c190084