Chemical Reactivity of Ti + within Water, Dimethyl Ether, and Methanol Clusters

The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Korean Chemical Society 2003, 24(2), , pp.197-204
Hauptverfasser: Koo, Young-Mi, An, Hyung-Joon, Yoo, Seoung-Kyo, Jung, Kwang-Woo
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clusters were dominated by the dehydrogenation reaction, which produces $TiO^+(H_2O)_n$ clusters. The mass spectra resulting from the reactions of $Ti^+\;with\;CH_3OCH_3$ clusters exhibit a major sequence of $Ti^+(OCH_3)_m(CH_3OCH_3)_n$ cluster ions, which is attributed to the insertion of $Ti^+$ ion into C-O bond of $CH_3OCH_3$ followed by $CH_3$ elimination. The prevalence of $Ti^+(OCH_3)_m(CH_3OD)_n$ ions in the reaction of $Ti^+\;with\;CH_3OD$ clusters suggests that D elimination via O-D bond insertion is the preferred decomposition pathway. In addition, the results indicate that consecutive insertion reactions by the $Ti^+$ ion occur for up to three precursor molecules. Thus, examination of $Ti^+$ insertion into three different molecules establishes the reactivity order: O-H > C-O > C-H. The experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by cluster size and argon stagnation pressure. The reaction energetics and formation mechanisms of the observed heterocluster ions are also discussed.
ISSN:0253-2964
1229-5949