A Corresponding State Theory for the Viscosity of Liquids
A phenomenological theory of viscosity previously proposed by the present authors8 is applied to the corresponding state theory for the viscosity of liquid. Through the process of the formulation of the corresponding state equation, we can find the simple viscosity equation with no parameters in a r...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Korean Chemical Society 2008, 29(1), , pp.33-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A phenomenological theory of viscosity previously proposed by the present authors8 is applied to the corresponding state theory for the viscosity of liquid. Through the process of the formulation of the corresponding state equation, we can find the simple viscosity equation with no parameters in a reduced form. The liquid viscosities of various substances can be calculated using this equation when we know only the values of the molecular weight and critical constant of substances. A corresponding state equation for the viscosity of liquid from this theory may be applicable to predicting viscosities of various substances under varying temperature and pressure. As a result, this equation may be widely applied to chemical engineering. A phenomenological theory of viscosity previously proposed by the present authors8 is applied to the corresponding state theory for the viscosity of liquid. Through the process of the formulation of the corresponding state equation, we can find the simple viscosity equation with no parameters in a reduced form. The liquid viscosities of various substances can be calculated using this equation when we know only the values of the molecular weight and critical constant of substances. A corresponding state equation for the viscosity of liquid from this theory may be applicable to predicting viscosities of various substances under varying temperature and pressure. As a result, this equation may be widely applied to chemical engineering. KCI Citation Count: 5 |
---|---|
ISSN: | 0253-2964 1229-5949 |
DOI: | 10.5012/bkcs.2008.29.1.033 |