Enhanced oral absorption of salmon calcitonin-encapsulated PLGA nanoparticles by adding organic substances
Two organic compounds with potential absorption enhancing effects, bile acids and transferrin, were examined by the gastro-intestinal (GI) absorption of therapeutic salmon calcitonin (sCT) as encapsulated by poly(lactide-co-glycolide) (PLGA) for the treatment of osteoporosis. The sCT-loaded PLGA nan...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2009, 26(1), 118, pp.131-135 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two organic compounds with potential absorption enhancing effects, bile acids and transferrin, were examined by the gastro-intestinal (GI) absorption of therapeutic salmon calcitonin (sCT) as encapsulated by poly(lactide-co-glycolide) (PLGA) for the treatment of osteoporosis. The sCT-loaded PLGA nanocapsules were prepared by O/W emulsification approach. Either additive of a designated content was mixed with sCT dissolved in methanol. For bile acids, their content (0–7.5 mg to sCT 6 mg) was observed to have a substantial effect both on the emulsification process and the encapsulation efficiency. When 1.5 mg of bile acids was added, sCT-loaded PLGA nanocapsules of about 700 nm in diameter and with a fairly high encapsulation efficiency greater than 35% were produced. Accordingly, this formulation gave the most significant hypocalcemic effect in an in vivo experiment with SD rats. On the other hand, a too high bile acids loading resulted in a poor encapsulation efficiency of less than 7%. Two principal roles of bile acids were proposed: emulsifying agent and absorption enhancer. Transferrin, a human glycoprotein of 80 kDa molecular weight, turned out to have potential as absorption enhancer as well. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-009-0020-2 |