Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes
Bacterial cellulose (BC) was produced by Acetobacter xylinum KJ1 in a modified airlift-type bubble column bioreactor, which had a low shear stress and high oxygen transfer rate (k L a). Saccharified food wastes (SFW) were used as the BC production medium due to its low cost. An aeration rate of 1.2...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2009, 26(1), 118, pp.141-146 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial cellulose (BC) was produced by
Acetobacter xylinum
KJ1 in a modified airlift-type bubble column bioreactor, which had a low shear stress and high oxygen transfer rate (k
L
a). Saccharified food wastes (SFW) were used as the BC production medium due to its low cost. An aeration rate of 1.2 vvm (6 L/min) was tentatively determined as the optimal aeration condition in a 10 L spherical type bubble column bioreactor, by analysis of the oxygen transfer coefficient. When 0.4% agar was added, the BC production reached 5.8 g/L, compared with 5.0 g/L in the culture without the addition of agar. The BC productivity was improved by 10% in the addition of 0.4% agar into the SFW medium. Then, by conversion of a linear velocity of 0.93 cm/sec, from the relationship between the linear velocity and oxygen transfer rate, 1.0 vvm (30 L/min) was determined as an optimal aeration condition in a 50 L spherical type bubble column reactor. Using SFW medium, with the addition of 0.4% agar, and air supplied of 1.0 vvm, 5.6 g/L BC was produced in the 50 L spherical type bubble column bioreactor after 3 days of cultivation, which was similar to that produced in the 10 L bioreactor. In conclusion, the addition of agar, a viscous polysaccharide, into SFW medium is effective for the production of BC, and this scale-up method is very useful for the mass production in a 50 L spherical type bubble column bioreactor by decreasing the shear stress and increasing the k
L
a. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-009-0022-0 |