Removal of malachite green in aqueous solution by adsorption on sawdust

A new adsorbent was synthesized from sawdust, a forest residue, in which methanol was used as a solvent and triethylamine as a modification agent under the following optimum conditions: 25 °C of reaction temperature, 1 : 8.75 of the ratio of sawdust to triethylamine (g:mL) and 1 hour of reaction tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Korean journal of chemical engineering 2015, 32(12), 189, pp.2443-2448
Hauptverfasser: Song, Yinghua, Ding, Sheguang, Chen, Shengming, Xu, Hui, Mei, Ye, Ren, Jianmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new adsorbent was synthesized from sawdust, a forest residue, in which methanol was used as a solvent and triethylamine as a modification agent under the following optimum conditions: 25 °C of reaction temperature, 1 : 8.75 of the ratio of sawdust to triethylamine (g:mL) and 1 hour of reaction time. The adsorption capacity of this adsorbent for malachite green was improved by 632.98% in contrast to that of the unmodified sawdust under the same adsorption conditions. Factors affecting the adsorption behavior of this adsorbent for malachite green, such as pH value, adsorption time, temperature and initial dye concentration, were evaluated through experiments in a batch system. The results indicated that the maximum adsorption capacity can be achieved at 5.08 of pH value and adsorption equilibrium can be reached in 6 hours. It was also found that the higher the temperature, the higher the adsorptive capacity would be. The Freundlich isotherm model provides a better description for the adsorption equilibrium when compared with the Langmuir equation in the conditions of the present study. Additionally, to examine the controlling mechanisms of the process, kinetic equations of the mass transfer and chemical reaction, the pseudo-first order model, the pseudo-second order model and the intraparticle diffusion model were used to correlate the experimental data respectively. The adsorption process of malachite green on sawdust tended to be controlled simultaneously by film mass transfer and intra-particle diffusion and it accompanied chemical reactions. It showed that the sawdust modified with triethylamine had good performance for cationic dye and can be used as a biomass adsorbent to treat dyes-containing wastewater with high quality.
ISSN:0256-1115
1975-7220
DOI:10.1007/s11814-015-0103-1