Effect of attapulgite calcination on heavy metal adsorption from acid mine drainage
Attapulgite calcined at 973.15K was characterized and utilized as an adsorbent for the removal of heavy metals and neutralization of acid mine drainage (AMD) from a gold mine. Batch adsorption experiments were carried out using a thermostatic shaker. Activated attapulgite showed that it can neutrali...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2015, 32(4), 181, pp.707-716 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Attapulgite calcined at 973.15K was characterized and utilized as an adsorbent for the removal of heavy metals and neutralization of acid mine drainage (AMD) from a gold mine. Batch adsorption experiments were carried out using a thermostatic shaker. Activated attapulgite showed that it can neutralize AMD as it raised the pH from 2.6 to 7.3 after a residence time of 2 h. Metal ion removal after 2 h was 100% for Cu (II), 99.46% for Fe (II), 96.20% for Co (II), 86.92% for Ni (II) and 71.52% for Mn (II) using a 2.5% w/v activated attapulgite loading. The adsorption best fit the Langmuir isotherm; however, Cu (II), Co (II), and Fe (II) data fit the Freundlich isotherm as well. Calcination at 973.15 K resulted in the reduction of the equilibrium residence time from 4 to 2 h, solid loading reduction from 10 to 2.5% m/v and an increase in maximum adsorption capacity compared with unactivated attapulgite. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-014-0266-1 |