Combined adsorption and reduction of Cr(VI) from aqueous solution on polyaniline/multiwalled carbon nanotubes composite

Polyaniline/multiwalled carbon nanotube (PANI-MWCNT) was prepared by bounding polyaniline on the surface of oxidized multiwalled carbon nanotube. The structure and surface properties of synthesized composites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Korean journal of chemical engineering 2015, 32(9), 186, pp.1889-1895
Hauptverfasser: Wang, Jiahong, Yin, Xiaolong, Tang, Wei, Ma, Hongrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyaniline/multiwalled carbon nanotube (PANI-MWCNT) was prepared by bounding polyaniline on the surface of oxidized multiwalled carbon nanotube. The structure and surface properties of synthesized composites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscope (TEM), and its adsorption capability for aqueous Cr(VI) was also studied. Characterized results showed that polyaniline was successfully anchored on the surface of MWCNT. From adsorption experiments the maximum adsorption amount of Cr(VI) onto PANI-MWCNTs was 28.25, 31.75 and 36.76 mg·g ‒1 at 15, 25 and 35 °C. Thermodynamic parameters showed that the Cr(VI) adsorption process was endothermic, spontaneous and feasible. Cr(VI) adsorption followed pseudo-second-order kinetics. Cr(VI) adsorption on the adsorbent decreases with increasing solution pH. The presence of anions in solution almost has no effect on Cr(VI) adsorption, indicating good selectivity. XPS analysis confirms that electrostatic interaction, reduction and chelation contribute to enhanced Cr(VI) removal. Cr(VI) loaded absorbent can be readily desorbed in 0.1 mol·L ‒1 of NaOH solution, and the desorption rate was 84.12%.
ISSN:0256-1115
1975-7220
DOI:10.1007/s11814-014-0395-6