Preparation and Characterization of Electrospun Poly(L-lactic acid-co-succinic acid-co-1,4-butane diol) Fibrous Membranes
Poly(L-lactic acid-co-succinic acid-co-l,4-butane diol) (PLASB) was synthesized by direct condensation copolymerization of L-lactic acid (LA), succinic acid (SA), and 1,4-butanediol (BD) in the bulk using titanium(IV) butoxide as a catalyst. The weight-average molecular weight ofPLASB was $2.1{\time...
Gespeichert in:
Veröffentlicht in: | Macromolecular research 2005, 13(1), , pp.73-79 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(L-lactic acid-co-succinic acid-co-l,4-butane diol) (PLASB) was synthesized by direct condensation copolymerization of L-lactic acid (LA), succinic acid (SA), and 1,4-butanediol (BD) in the bulk using titanium(IV) butoxide as a catalyst. The weight-average molecular weight ofPLASB was $2.1{\times}10^{5}$ when the contents of SA and BD were each 0.5 mol/100 mol of LA. Electrospinning was used to fabricate porous membranes from this newly synthesized bioabsorbable PLASB dissolved in mixed solvents of methylene chloride and dimethylformamide. Scanning electron microscopy (SEM) images indicated that the fiber diameters and nanostructured morphologies of the electrospun membranes depended on the processing parameters, such as the solvent ratioand the polymer concentration. By adjusting both the solvent mixture ratio and the polymer concentration, we could fabricate uniform nanofiber non-woven membranes. Cell proliferation on the electrospun porous PLASB membranes was evaluated using mouse fibroblast cells; we compare these results with those of the cell responses on bulk PLASB films. |
---|---|
ISSN: | 1598-5032 2092-7673 |