MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2013, 45(5), , pp.605-612
Hauptverfasser: KUMAR, MUKESH, NAYAK, A K, JAIN, V, VIJAYAN, P K, VAZE, K K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 m3, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.
ISSN:1738-5733
2234-358X
DOI:10.5516/NET.02.2012.086