Network Analysis of Hepatic Genes Responded to High-Fat Diet in C57BL/6J Mice: Nutrigenomics Data Mining from Recent Research Findings
Obesity and its associated complications, including diabetes, dyslipidemia, atherosclerosis, and some cancers, have been a global health problem with a rapid increase of the obese population. In this study, we selected 31 obesity candidate genes in the liver of high-fat-induced obese C57BL/6J mice t...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal food 2010, 13(4), , pp.743-756 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Obesity and its associated complications, including diabetes, dyslipidemia, atherosclerosis, and some cancers, have been a global health problem with a rapid increase of the obese population. In this study, we selected 31 obesity candidate genes in the liver of high-fat-induced obese C57BL/6J mice through investigation of literature search and analyzed functional protein-protein interaction of the genes using the STRING database. Most of the obesity candidate genes were closely connected through lipid metabolism, and in particular acyl-coenzyme A oxidase 1 appeared to be a core obesity gene. Overall, genes involved in fatty acid beta-oxidation, fatty acid synthesis, and gluconeogenesis were up-regulated, and genes involved in sterol biosynthesis, insulin signaling, and oxidative stress defense system were down-regulated with a high-fat diet. Future identification of core obesity genes and their functional targets is expected to provide a new way to prevent obesity by phytochemicals or functional foods on the basis of food and nutritional genomics. |
---|---|
ISSN: | 1096-620X 1557-7600 |
DOI: | 10.1089/jmf.2009.1350 |