Fructo-oligosaccharide production from inulin through partial citric or phosphoric acid hydrolyses
Purified inulin from Dahlia tubers was partially hydrolyzed to form fructo-oligosaccharides by using citric or phosphoric acids (pH, 2.0-2.5) as mild acid catalysts. The ideal kinetic conditions to ensure a high yield of fructo-oligosaccharides relative to free fructose were a temperature range of 8...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal food 2011, 14(11), , pp.1425-1430 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purified inulin from Dahlia tubers was partially hydrolyzed to form fructo-oligosaccharides by using citric or phosphoric acids (pH, 2.0-2.5) as mild acid catalysts. The ideal kinetic conditions to ensure a high yield of fructo-oligosaccharides relative to free fructose were a temperature range of 85°C-95°C, a hydrolysis time of 15-25 minutes, and a catalyst pH of 2.5. At the higher temperature and the longest hydrolysis time, an inversion of the product ratio occurred. Under these conditions, co-generation of hydroxymethylfurfural occurred, and it was eliminated by activated charcoal. Unlike in classic hydrolysis with hydrochloric or sulfuric acid, deionization of the actual hydrolysates was not necessary because the catalyst neutralization with common bases results in the formation of co-nutrients with alternative uses as foods or fermentation substrates. These whole hydrolysates can be advantageously added as nutraceuticals to carbonated beverages and acidic foods, such as soft drinks and yogurts. |
---|---|
ISSN: | 1096-620X 1557-7600 |
DOI: | 10.1089/jmf.2010.0273 |