The Edible Red Seaweed Gracilariopsis chorda Promotes Axodendritic Architectural Complexity in Hippocampal Neurons
The edible red seaweed Gracilariopsis chorda (Holmes) Ohmi is known for its extensive medicinal benefits and its use as a food ingredient in Korea, Japan, and China. In a previous study, an ethanol extract of G. chorda (GCE) showed potential neuroprotective effects in cultured hippocampal neurons. I...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal food 2016, 19(7), , pp.638-644 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The edible red seaweed Gracilariopsis chorda (Holmes) Ohmi is known for its extensive medicinal benefits and its use as a food ingredient in Korea, Japan, and China. In a previous study, an ethanol extract of G. chorda (GCE) showed potential neuroprotective effects in cultured hippocampal neurons. In this study, we further examined the ability of GCE to promote neurite extension in primary rat hippocampal neurons. Neurons were stained with the lipophilic dye DiO or immunostained to visualize the neuronal morphology. The results indicated that GCE concentration-dependently increased neurite outgrowth, with an optimal concentration of 30 μg/mL. GCE significantly promoted early neuronal differentiation (i.e., polarity and process number) and enhanced axonal and dendritic arborization in a time-responsive manner. In addition, arachidonic acid, which was previously identified and quantified as a major neuroprotective component of GCE, significantly accelerated neurite outgrowth similar to GCE. Our findings suggest that G. chorda and its active component, arachidonic acid, may be useful for developing medicinal food or pharmaceuticals in the prevention and treatment of neurological disorders. |
---|---|
ISSN: | 1096-620X 1557-7600 |
DOI: | 10.1089/jmf.2016.3694 |