Evaluation of Se Accumulation in the Production of Se-treated Soybean Sprouts and Mungbean Sprouts
In this study, the selenium (Se) accumulations of soybean sprouts and mungbean sprouts treated with various concentrations of Se-solutions were evaluated, as part of a broader effort to produce Se-enriched variants of the plants. Four levels of sodium selenate (Na2SeO4)-dissolved solutions (i.e. 0,...
Gespeichert in:
Veröffentlicht in: | Preventive nutrition and food science 2009, 14(2), , pp.142-147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the selenium (Se) accumulations of soybean sprouts and mungbean sprouts treated with various concentrations of Se-solutions were evaluated, as part of a broader effort to produce Se-enriched variants of the plants. Four levels of sodium selenate (Na2SeO4)-dissolved solutions (i.e. 0, T0; 6, T1; 60, T2; and 600 µg/mL, T3) were prepared and sprayed onto the plants during cultivation. The effect of different spraying periods on Se accumulation was also assessed by watering plant groups once a day for periods of one, two, or three days. Se solution remaining on the surfaces of the plants was washed out by spraying with distilled water on the final day of cultivation. However, the increase of Se accumulation in the plants was found to depend on both Se-concentration and watering period, and the soybean sprouts were determined to accumulate Se more effectively than the mungbean sprouts. Additionally, with regard to Se accumulation in the plants, the period of application of Se solution was determined to be more important than the concentration of the Se solution applied. The averaged total levels of Se-enrichment in whole soybean sprouts at T0, T1, T2, and T3 were 0.26, 65.86, 179.62, and 525.12 µg/dry matter (DM) g, respectively, and the relative equations relating Se enrichment in soybean sprouts (Y) against watering days (X) were Y=32.505X-36.17 (T1), Y=88.46X-92.04 (T2), and Y=251.11X-254.9 (T3). The averaged total levels of Se-enrichment in the whole mungbean sprouts at T1, T2, and T3 group were 0.05, 3.64, and 101.43 µg/DM g, respectively, and the relative equations relating Se enrichment (Y) to watering days (X) for mungbean sprouts were Y=1.67X-1.3467 at T1 and Y=48.035X-46.907 at T2. The results of this study suggest that soybean sprouts and mungbean sprouts enriched with bioavailable Se can be produced on a large scale by Se supplementation, allowing for the development of healthy functional foods such as Se-enriched mungbean sprout soups and salads, Se-enriched functional drink and food additives, and selenium tablets to promote health. KCI Citation Count: 0 |
---|---|
ISSN: | 2287-1098 2287-8602 |
DOI: | 10.3746/jfn.2009.14.2.142 |