WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES
On the setting of the upper half-space H of the Euclidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < $\infty$ and nonorthogonal projections for 1 $\leq$ p < $\infty$ . Using these results, we show that Bergman norm is equiva lent to the normal derivative n...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2005, 42(5), , pp.975-1002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On the setting of the upper half-space H of the Euclidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < $\infty$ and nonorthogonal projections for 1 $\leq$ p < $\infty$ . Using these results, we show that Bergman norm is equiva lent to the normal derivative norms on weighted harmonic Bergman spaces. Finally, we find the dual of b$\_{$^{1}$. |
---|---|
ISSN: | 0304-9914 2234-3008 |