WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

On the setting of the upper half-space H of the Eu­clidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < $\infty$ and nonorthogonal projections for 1 $\leq$ p < $\infty$ . Using these results, we show that Bergman norm is equiva­ lent to the normal derivative n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2005, 42(5), , pp.975-1002
Hauptverfasser: Koo, HYUNGWOON, NAM, KYESOOK, YI, HEUNGSU
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the setting of the upper half-space H of the Eu­clidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < $\infty$ and nonorthogonal projections for 1 $\leq$ p < $\infty$ . Using these results, we show that Bergman norm is equiva­ lent to the normal derivative norms on weighted harmonic Bergman spaces. Finally, we find the dual of b$\_{$^{1}$.
ISSN:0304-9914
2234-3008