TOPOLOGIES AND INCIDENCE STRUCTURE ON R n -GEOMETRIES

An R$^{n}$ -geometry (P$^{n}$ , L) is a generalization of the Euclidean geometry on R$^{n}$ (see Def. 1.1). We can consider some topologies (see Def. 2.2) on the line set L such that the join operation V : P$^{n}$ $\times$ P$^{n}$ \ $\Delta$ longrightarrow L is continuous. It is a notable fact that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2002, 39(1), , pp.31-49
1. Verfasser: Im, Jang-Hwan
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An R$^{n}$ -geometry (P$^{n}$ , L) is a generalization of the Euclidean geometry on R$^{n}$ (see Def. 1.1). We can consider some topologies (see Def. 2.2) on the line set L such that the join operation V : P$^{n}$ $\times$ P$^{n}$ \ $\Delta$ longrightarrow L is continuous. It is a notable fact that in the case n = 2 the introduced topologies on L are same and the join operation V : P$^2$ $\times$ P$^2$ \ $\Delta$ longrightarrow L is continuous and open [10, 11]. It is a fundamental topological property of plane geometry, but in the cases n $\geq$ 3, it is no longer true. There are counter examples [2]. Hence, it is a fundamental problem to find suitable topologies on the line set L in an R$^{n}$ -geometry (P$^{n}$ , L) such that these topologies are compatible with the incidence structure of (P$^{n}$ , L). Therefore, we need to study the topologies of the line set L in an R$^{n}$ -geometry (P$^{n}$ , L). In this paper, the relations of such topologies on the line set L are studied.
ISSN:0304-9914
2234-3008