ENERGY FINITE SOLUTIONS OF ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

We prove that for any continuous function f on the s-harmonic (1 < s < ∞) boundary of a complete Riemannian manifold M, there exists a solution, which is a limit of a sequence of bounded energy finite solutions in the sense of supremum norm, for a certain elliptic operator A on M whose boundar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2008, 45(3), , pp.807-819
Hauptverfasser: Kim, Seok-Woo, Lee, Yong-Hah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for any continuous function f on the s-harmonic (1 < s < ∞) boundary of a complete Riemannian manifold M, there exists a solution, which is a limit of a sequence of bounded energy finite solutions in the sense of supremum norm, for a certain elliptic operator A on M whose boundary value at each s-harmonic boundary point coincides with that of f. If E₁,E₂,...,El are s-nonparabolic ends of M, then we also prove that there is a one to one correspondence between the set of bounded energy finite solutions for A on M and the Cartesian product of the sets of bounded energy finite solutions for A on Ei which vanish at the boundary ∂Ei for i = 1, 2,..., l. KCI Citation Count: 1
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2008.45.3.807