ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE
This paper develops in detail the differential geometry of ruled surfaces from two perspectives, and presents the underlying relations which unite them. Both scalar and dual curvature functions which define the shape of a ruled surface are derived. Explicit formulas are presented for the computation...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2006, 43(6), , pp.1339-1355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops in detail the differential geometry of ruled surfaces from two perspectives, and presents the underlying relations which unite them. Both scalar and dual curvature functions which define the shape of a ruled surface are derived. Explicit formulas are presented for the computation of these functions in both formulations of the differential geometry of ruled surfaces. Also presented is a detailed analysis of the ruled surface which characterizes the shape of a general ruled surface in the same way that osculating circle characterizes locally the shape of a non-null Lorentzian curve. |
---|---|
ISSN: | 0304-9914 2234-3008 |