RELATIVE SEQUENCE ENTROPY PAIRS FOR A MEASURE AND RELATIVE TOPOLOGICAL KRONECKER FACTOR

Let $(X,\;B,\;{\mu},\;T)$ be a dynamical system and (Y, A, v, S) be a factor. We investigate the relative sequence entropy of a partition of X via the maximal compact extension of (Y, A, v, S). We define relative sequence entropy pairs and using them, we find the relative topological ${\mu}-Kronecke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2005, 42(4), , pp.857-869
Hauptverfasser: AHN YOUNG-HO, LEE JUNGSEOB, PARK KYEWON KOH
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $(X,\;B,\;{\mu},\;T)$ be a dynamical system and (Y, A, v, S) be a factor. We investigate the relative sequence entropy of a partition of X via the maximal compact extension of (Y, A, v, S). We define relative sequence entropy pairs and using them, we find the relative topological ${\mu}-Kronecker$ factor over (Y, v) which is the maximal topological factor having relative discrete spectrum over (Y, v). We also describe the topological Kronecker factor which is the maximal factor having discrete spectrum for any invariant measure.
ISSN:0304-9914
2234-3008