A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS

In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form C(-2n_1,2n_2,-2n_3,…, (-1)^r2n_r) in terms of n_1, n_2,…, n_r. As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link L^(3) with rational qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2009, 46(5), , pp.919-947
Hauptverfasser: Lee, Eun-Ju, Lee, Sang-Youl, Seo, Myoung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form C(-2n_1,2n_2,-2n_3,…, (-1)^r2n_r) in terms of n_1, n_2,…, n_r. As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link L^(3) with rational quotient L = C(2, n_1, -2, n_2,…,n_r, (-1)^r 2) for any nonzero integers n_1, n_2,…,n_r and give a formula for the span of the Jones polynomial of L^(3) in terms of n_1, n_2,…, n_r with n_i ≠ ±1 for all i = 1, 2,…,r. KCI Citation Count: 3
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2009.46.5.919