ON THE k-REGULAR SEQUENCES AND THE GENERALIZATION OF F-MODULES

For a given ideal I of a Noetherian ring R and an arbitrary integer k ≥ -1, we apply the concept of k-regular sequences and the notion of k-depth to give some results on modules called k-Cohen Macaulay modules, which in local case, is exactly the k-modules (as a generalization of f-modules). Meanwhi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2012, 49(5), , pp.1083-1096
Hauptverfasser: Khadijeh Ahmadi-Amoli, Navid Sanaei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given ideal I of a Noetherian ring R and an arbitrary integer k ≥ -1, we apply the concept of k-regular sequences and the notion of k-depth to give some results on modules called k-Cohen Macaulay modules, which in local case, is exactly the k-modules (as a generalization of f-modules). Meanwhile, we give an expression of local cohomology with respect to any k-regular sequence in I, in a particular case. We prove that the dimension of homology modules of the Koszul complex with respect to any k-regular sequence is at most k. Therefore homology modules of the Koszul complex with respect to any lter regular sequence has nite length. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2012.49.5.1083