ON THE k-REGULAR SEQUENCES AND THE GENERALIZATION OF F-MODULES
For a given ideal I of a Noetherian ring R and an arbitrary integer k ≥ -1, we apply the concept of k-regular sequences and the notion of k-depth to give some results on modules called k-Cohen Macaulay modules, which in local case, is exactly the k-modules (as a generalization of f-modules). Meanwhi...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2012, 49(5), , pp.1083-1096 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given ideal I of a Noetherian ring R and an arbitrary integer k ≥ -1, we apply the concept of k-regular sequences and the notion of k-depth to give some results on modules called k-Cohen Macaulay modules, which in local case, is exactly the k-modules (as a generalization of f-modules). Meanwhile, we give an expression of local cohomology with respect to any k-regular sequence in I, in a particular case. We prove that the dimension of homology modules of the Koszul complex with respect to any k-regular sequence is at most k. Therefore homology modules of the Koszul complex with respect to any lter regular sequence has nite length. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.2012.49.5.1083 |