THE CHIRAL SUPERSTRING SIEGEL FORM IN DEGREE TWO IS A LIFT

We prove that the Siegel modular form of D'Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t=2 over the theta group Γ1(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2012, 49(2), , pp.293-314
Hauptverfasser: Poor, Cris, Yuen, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the Siegel modular form of D'Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t=2 over the theta group Γ1(1, 2) to Siegel modular cusp forms over certain subgroups Γpara(t, 1, 2) of paramodular groups. The theta group lift given here is a modication of the Gritsenko lift. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2012.49.2.293