THE CHIRAL SUPERSTRING SIEGEL FORM IN DEGREE TWO IS A LIFT
We prove that the Siegel modular form of D'Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t=2 over the theta group Γ1(...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2012, 49(2), , pp.293-314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the Siegel modular form of D'Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t=2 over the theta group Γ1(1, 2) to Siegel modular cusp forms over certain subgroups Γpara(t, 1, 2) of paramodular groups. The theta group lift given here is a modication of the Gritsenko lift. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.2012.49.2.293 |