CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power β of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2013, 50(6), , pp.1311-1332
Hauptverfasser: Guo, Shunzi, Li, Guanghan, Wu, Chuanxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power β of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached. KCI Citation Count: 4
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2013.50.6.1311