A PRIORI L² ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS
Based on an expanded mixed finite element method, we con- sider the semidiscrete approximations of the solution u of the quasilinear pseudo-parabolic equation defined on Ω ⊂ R d , 1 ≤ d ≤ 3. We construct the semidiscrete approximations of ∇u and a(u)∇u + b(u)∇u t as well as u and prove the existence...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2014, 51(1), , pp.67-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on an expanded mixed finite element method, we con- sider the semidiscrete approximations of the solution u of the quasilinear pseudo-parabolic equation defined on Ω ⊂ R d , 1 ≤ d ≤ 3. We construct the semidiscrete approximations of ∇u and a(u)∇u + b(u)∇u t as well as u and prove the existence of the semidiscrete approximations. And also we prove the optimal convergence of ∇u and a(u)∇u + b(u)∇u t as well as u in L² normed space. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.2014.51.1.067 |