ON QUASI-COMMUTATIVE RINGS

We study the structure of central elements in relation with polynomial rings and introduce {\it quasi-commutative}as a generalization of commutative rings. The Jacobson radical of the polynomial ring over a quasi-commutative ring is shown to coincide with the set of all nilpotent polynomials; and lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2016, 53(2), , pp.475-488
Hauptverfasser: Jung, Da Woon, Kim, Byung-Ok, Kim, Hong Kee, Lee, Yang, Nam, Sang Bok, Ryu, Sung Ju, Sung, Hyo Jin, Yun, Sang Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the structure of central elements in relation with polynomial rings and introduce {\it quasi-commutative}as a generalization of commutative rings. The Jacobson radical of the polynomial ring over a quasi-commutative ring is shown to coincide with the set of all nilpotent polynomials; and locally finite quasi-commutative rings are shown to be commutative. We also provide several sorts of examples by showing the relations between quasi-commutative rings and other ring properties which have roles in ring theory. We examine next various sorts of ring extensions of quasi-commutative rings. KCI Citation Count: 2
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2016.53.2.475