COMPUTATIONS OF SPACES OF PARAMODULAR FORMS OF GENERAL LEVEL
This article gives upper bounds on the number of Fourier-Jacobi coefficients that determine a paramodular cusp form in degree two. The level~N of the paramodular group is completely general throughout. Additionally, spaces of Jacobi cusp forms are spanned by using the theory of theta blocks due to G...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2016, 53(3), , pp.645-689 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article gives upper bounds on the number of Fourier-Jacobi coefficients that determine a paramodular cusp form in degree two. The level~N of the paramodular group is completely general throughout. Additionally, spaces of Jacobi cusp forms are spanned by using the theory of theta blocks due to Gritsenko, Skoruppa and Zagier. We combine these two techniques to rigorously compute spaces of paramodular cusp forms and to verify the Paramodular Conjecture of Brumer and Kramer in many cases of low level. The proofs rely on a detailed description of the zero dimensional cusps for the subgroup of integral elements in each paramodular group. KCI Citation Count: 1 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j150219 |