A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equa- tions can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2014, 51(4), , pp.665-678
Hauptverfasser: Zhang, Tie, Liu, Jingna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equa- tions can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the L₂-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.2014.51.4.665