A NOTE ON KADIRI'S EXPLICIT ZERO FREE REGION FOR RIEMANN ZETA FUNCTION
In 2005 Kadiri proved that the Riemann zeta function ζ(s) does not vanish in the region Re(s) ≥ 1 − 1/R0 log|Im(s)| , |Im(s)| ≥ 2 with R 0 = 5.69693. In this paper we will show that R 0 can be taken R 0 = 5.68371 using Kadiri’s method together with Platt’s numerical verification of Riemann Hypothesi...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2014, 51(6), , pp.1291-1304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2005 Kadiri proved that the Riemann zeta function ζ(s) does not vanish in the region Re(s) ≥ 1 − 1/R0 log|Im(s)| , |Im(s)| ≥ 2 with R 0 = 5.69693. In this paper we will show that R 0 can be taken R 0 = 5.68371 using Kadiri’s method together with Platt’s numerical verification of Riemann Hypothesis. KCI Citation Count: 2 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.2014.51.6.1291 |