A NEW PROOF OF MACK'S CHARACTERIZATION OF PCS-ALGEBRAS
Let A be a $C^*$-algebra and $K_{A}$ its Pedersen's ideal. A is called a PCS-algebra if the multiplier $\Gamma(K_{A})\;of\;K_{A}$ is the multiplier M(A) of A. J. Mack [5]characterized PCS-algebras by weak compactness on the spectrum of A. We give a new simple proof of this Mack's result us...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2003, 18(1), , pp.59-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a $C^*$-algebra and $K_{A}$ its Pedersen's ideal. A is called a PCS-algebra if the multiplier $\Gamma(K_{A})\;of\;K_{A}$ is the multiplier M(A) of A. J. Mack [5]characterized PCS-algebras by weak compactness on the spectrum of A. We give a new simple proof of this Mack's result using the concept of semicontinuity and N. C. Phillips' description of $\Gamma(K_{A})$. |
---|---|
ISSN: | 1225-1763 2234-3024 |