COMPOSITE-EXPONENTIAL-FITTING INTERPOLATION RULES

This paper demonstrates how composite-exponential-fitting interpolation rules can be constructed to fit an oscillatory function using not only pointwise values of that function but also of that functions’s derivative on a closed and bounded interval of interest. This is done in the framework of expo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2008, 23(2), , pp.295-305
1. Verfasser: Kim, Kyung-Joong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper demonstrates how composite-exponential-fitting interpolation rules can be constructed to fit an oscillatory function using not only pointwise values of that function but also of that functions’s derivative on a closed and bounded interval of interest. This is done in the framework of exponential-fitting techniques. These rules extend the classical composite cubic Hermite interpolating polynomials in the sense that they become the classical composite polynomials as a parameter tends to zero. Some examples are provided to compare the newly constructed rules with the classical composite cubic Hermite interpolating polynomials (or recently developed interpolation rules). KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.2008.23.2.295