ON NUMBER OF WAYS TO SHELL THE k-DIMENSIONAL TREES

Which spheres are shellable?[2]. We present one of them which is the k-tree with n-labeled vertices. We found that the number of ways to shell the k-dimensional trees on n-labeled vertices is $$\frac{n!}{(k+1)!}(nk-k^2-k+1)!k$$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2007, 44(2), , pp.259-263
Hauptverfasser: Chae, Gab-Byung, Cheong, Min-Seok, Kim, Sang-Mok
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Which spheres are shellable?[2]. We present one of them which is the k-tree with n-labeled vertices. We found that the number of ways to shell the k-dimensional trees on n-labeled vertices is $$\frac{n!}{(k+1)!}(nk-k^2-k+1)!k$$.
ISSN:1015-8634
2234-3016