ON NUMBER OF WAYS TO SHELL THE k-DIMENSIONAL TREES
Which spheres are shellable?[2]. We present one of them which is the k-tree with n-labeled vertices. We found that the number of ways to shell the k-dimensional trees on n-labeled vertices is $$\frac{n!}{(k+1)!}(nk-k^2-k+1)!k$$.
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2007, 44(2), , pp.259-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Which spheres are shellable?[2]. We present one of them which is the k-tree with n-labeled vertices. We found that the number of ways to shell the k-dimensional trees on n-labeled vertices is $$\frac{n!}{(k+1)!}(nk-k^2-k+1)!k$$. |
---|---|
ISSN: | 1015-8634 2234-3016 |