Hepatitis C Virus Core Inhibits the Fas-mediated p38 Mitogen Activated Kinase Signaling Pathway in Hepatocytes

The p38 mitogen activated kinase (MAPK) signaling pathway plays an essential role in regulating many cellular processes, including inflammation, cell differentiation, and cell death. Here, we report that the hepatitis C virus (HCV) core inhibits the Fas-mediated p38 signaling pathway. The Fas-mediat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules and cells 2002, 13(3), , pp.444-451
Hauptverfasser: 양세환, Chang Geun Lee, Chang Woo Lee, 최의주, 윤승규, Kwang Seog Ahn, 성영철
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The p38 mitogen activated kinase (MAPK) signaling pathway plays an essential role in regulating many cellular processes, including inflammation, cell differentiation, and cell death. Here, we report that the hepatitis C virus (HCV) core inhibits the Fas-mediated p38 signaling pathway. The Fas-mediated p38 activation is suppressed in core-expressing HepG2 cell lines, as well as in the hepatocytes of transgenic mice. In addition, core protein blocked the Fas-mediated activation of apoptosis signal-regulating kinase 1 (ASK1), a major upstream MAPKKK of p38. Treatment of a specific p38 inhibitor (SB203580) or overexpression of a kinase-defective mutant, ASK1 (K709R), promoted Fas-mediated cell death in HepG2 cells. This suggests that the p38 and ASK1 activation is required for cell survival against Fas-mediated cell death. In addition, we observed that the HCV core protein enhances Fasmediated liver injury and lethality in transgenic mice. Collectively, our findings suggest that the HCV core inhibits the Fas-mediated p38 signaling pathway, which results in accelerated Fas-mediated cell death The p38 mitogen activated kinase (MAPK) signaling pathway plays an essential role in regulating many cellular processes, including inflammation, cell differentiation, and cell death. Here, we report that the hepatitis C virus (HCV) core inhibits the Fas-mediated p38 signaling pathway. The Fas-mediated p38 activation is suppressed in core-expressing HepG2 cell lines, as well as in the hepatocytes of transgenic mice. In addition, core protein blocked the Fas-mediated activation of apoptosis signal-regulating kinase 1 (ASK1), a major upstream MAPKKK of p38. Treatment of a specific p38 inhibitor (SB203580) or overexpression of a kinase-defective mutant, ASK1 (K709R), promoted Fas-mediated cell death in HepG2 cells. This suggests that the p38 and ASK1 activation is required for cell survival against Fas-mediated cell death. In addition, we observed that the HCV core protein enhances Fasmediated liver injury and lethality in transgenic mice. Collectively, our findings suggest that the HCV core inhibits the Fas-mediated p38 signaling pathway, which results in accelerated Fas-mediated cell death. KCI Citation Count: 25
ISSN:1016-8478
0219-1032