POSITIVE LINEAR OPERATORS IN C-ALGEBRAS
It is shown that every almost positive linear mapping h : A→ B of a Banach *-algebra A to a Banach *-algebra B is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all x ∈ A, and that every almost linear mapping h : A → B of a unital C^*-algebra A to a unital C^*-algebra B is a posi...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2009, 46(5), , pp.1031-1040 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that every almost positive linear mapping h : A→
B of a Banach *-algebra A to a Banach *-algebra B is a positive linear
operator when h(rx) = rh(x) (r > 1) holds for all x ∈ A, and that every
almost linear mapping h : A → B of a unital C^*-algebra A to a unital
C^*-algebra B is a positive linear operator when h(2^nu^*y) = h(2^nu)^*h(y)
holds for all unitaries u ∈ A, all y ∈ A, and all n = 0, 1, 2, . . ., by using
the Hyers-Ulam-Rassias stability of functional equations.
Under a more weak condition than the condition as given above, we
prove that every almost linear mapping h : A→ B of a unital C^*-algebra
A to a unital C^*-algebra B is a positive linear operator. It is applied to
investigate states, center states and center-valued traces. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.2009.46.5.1031 |