POSITIVE LINEAR OPERATORS IN C-ALGEBRAS

It is shown that every almost positive linear mapping h : A→ B of a Banach *-algebra A to a Banach *-algebra B is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all x ∈ A, and that every almost linear mapping h : A → B of a unital C^*-algebra A to a unital C^*-algebra B is a posi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2009, 46(5), , pp.1031-1040
Hauptverfasser: Park, Choon-Kil, An, Jong-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that every almost positive linear mapping h : A→ B of a Banach *-algebra A to a Banach *-algebra B is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all x ∈ A, and that every almost linear mapping h : A → B of a unital C^*-algebra A to a unital C^*-algebra B is a positive linear operator when h(2^nu^*y) = h(2^nu)^*h(y) holds for all unitaries u ∈ A, all y ∈ A, and all n = 0, 1, 2, . . ., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : A→ B of a unital C^*-algebra A to a unital C^*-algebra B is a positive linear operator. It is applied to investigate states, center states and center-valued traces. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.2009.46.5.1031