ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN
In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form -div(h(x)|∇ u|^(p-2)∇ u)+b(x)|u|^(p-2)u= f(x,u) , p≥2 in an unbounded domain Ω ⊂ R^N, N≥ 3, with sufficiently smooth bounded boundary ∂Ω, where h(x) ∈ [수식], [기호]=Ω...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2011, 48(6), , pp.1169-1182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form -div(h(x)|∇ u|^(p-2)∇ u)+b(x)|u|^(p-2)u= f(x,u) , p≥2 in an unbounded domain Ω ⊂ R^N, N≥ 3, with sufficiently smooth bounded boundary ∂Ω, where h(x) ∈ [수식], [기호]=Ω∪∂Ω, h(x)≥ 1 for all x ∈Ω.
The proof of main results rely essentially on the arguments of variational method. KCI Citation Count: 3 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.2011.48.6.1169 |