SOME INVARIANT SUBSPACES FOR SUBSCALAR OPERATORS
In this note, we prove that every subscalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent subscalar operator is nilpotent. We also prove that every subscalar operator with property (δ) on a Banach space of dimension greater than 1 has a non-trivial invariant closed lin...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2011, 48(6), , pp.1129-1135 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we prove that every subscalar operator with finite spectrum is algebraic.
In particular, a quasi-nilpotent subscalar operator is nilpotent.
We also prove that every subscalar operator with property (δ) on a Banach space of dimension greater than 1 has a non-trivial invariant closed linear subspace. KCI Citation Count: 1 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.2011.48.6.1129 |