ON THE LEBESGUE SPACE OF VECTOR MEASURES
In this paper we study the Banach space L^1(G) of real valued measurable functions which are integrable with respect to a vector measure G in the sense of D. R. Lewis. First, we investigate conditions for a scalarly integrable function f which guarantee f∈ L^1(G). Next, we give a sufficient conditio...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2011, 48(4), , pp.779-789 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the Banach space L^1(G) of real valued measurable functions which are integrable with respect to a vector measure G in the sense of D. R. Lewis. First, we investigate conditions for a scalarly integrable function f which guarantee f∈ L^1(G). Next, we give a sufficient condition for a sequence to converge in L^1(G). Moreover, for two vector measures F and G with values in the same Banach space, when F can be written as the integral of a function f∈ L^1(G), we show that certain properties of G are inherited to F; for instance, relative compactness or convexity of the range of vector measure. Finally, we give some examples of L^1(G) related to the approximation property. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.2011.48.4.779 |