ON THE LEBESGUE SPACE OF VECTOR MEASURES

In this paper we study the Banach space L^1(G) of real valued measurable functions which are integrable with respect to a vector measure G in the sense of D. R. Lewis. First, we investigate conditions for a scalarly integrable function f which guarantee f∈ L^1(G). Next, we give a sufficient conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2011, 48(4), , pp.779-789
Hauptverfasser: Choi, Chang-Sun, Lee, Keun-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the Banach space L^1(G) of real valued measurable functions which are integrable with respect to a vector measure G in the sense of D. R. Lewis. First, we investigate conditions for a scalarly integrable function f which guarantee f∈ L^1(G). Next, we give a sufficient condition for a sequence to converge in L^1(G). Moreover, for two vector measures F and G with values in the same Banach space, when F can be written as the integral of a function f∈ L^1(G), we show that certain properties of G are inherited to F; for instance, relative compactness or convexity of the range of vector measure. Finally, we give some examples of L^1(G) related to the approximation property. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.2011.48.4.779