ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

Let n ≥2 be an even integer. We investigate that if an odd mapping f:X →Y satisfies the following equation [수식]+[수식]=[수식] then f:X →Y is additive, where r ∈R. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2011, 48(4), , pp.673-688
Hauptverfasser: Chu, Hahng-Yun, Han, Gil-Jun, Kang, Dong-Seung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n ≥2 be an even integer. We investigate that if an odd mapping f:X →Y satisfies the following equation [수식]+[수식]=[수식] then f:X →Y is additive, where r ∈R. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C^*-algebras. As an application, we show that every almost linear bijection h:A→B of unital C^*-algebras A and B is a C^*-algebra isomorphism when h[수식]=h[수식]h(y) for all unitaries u∈ A, all y∈ A, and s=0,1,2,... KCI Citation Count: 1
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.2011.48.4.673