ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION
Let n ≥2 be an even integer. We investigate that if an odd mapping f:X →Y satisfies the following equation [수식]+[수식]=[수식] then f:X →Y is additive, where r ∈R. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spa...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2011, 48(4), , pp.673-688 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n ≥2 be an even integer. We investigate that if an odd mapping f:X →Y satisfies the following equation [수식]+[수식]=[수식] then f:X →Y is additive, where r ∈R. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C^*-algebras.
As an application, we show that every almost linear bijection h:A→B of unital C^*-algebras A and B is a C^*-algebra isomorphism when h[수식]=h[수식]h(y) for all unitaries u∈ A, all y∈ A, and s=0,1,2,... KCI Citation Count: 1 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.2011.48.4.673 |