Lp BOUNDS FOR THE PARABOLIC LITTLEWOOD-PALEY OPERATOR ASSOCIATED TO SURFACES OF REVOLUTION
In this paper the authors study the Lp boundedness for parabolic Littlewood-Paley operator $${\mu}{\Phi},{\Omega}(f)(x)=\({\int}_{0}^{\infty}{\mid}F_{\Phi,t}(x){\mid}^2\frac{dt}{t^3}\)^{1/2}$$, where $$F_{\Phi,t}(x)={\int}_{p(y){\leq}t}\frac{\Omega(y)}{\rho(y)^{{\alpha}-1}}f(x-{\Phi}(y))dy$$ and ${\...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2012, 49(4), , pp.787-797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper the authors study the Lp boundedness for parabolic Littlewood-Paley operator $${\mu}{\Phi},{\Omega}(f)(x)=\({\int}_{0}^{\infty}{\mid}F_{\Phi,t}(x){\mid}^2\frac{dt}{t^3}\)^{1/2}$$, where $$F_{\Phi,t}(x)={\int}_{p(y){\leq}t}\frac{\Omega(y)}{\rho(y)^{{\alpha}-1}}f(x-{\Phi}(y))dy$$ and ${\Omega}$ satisfies a condition introduced by Grafakos and Stefanov in [6]. The result in the paper extends some known results. KCI Citation Count: 1 |
---|---|
ISSN: | 1015-8634 2234-3016 |