EXISTENCE OF WEAK NON-NEGATIVE SOLUTIONS FOR A CLASS OF NONUNIFORMLY BOUNDARY VALUE PROBLEM

The goal of this paper is to study the existence of non-trivial non-negative weak solution for the nonlinear elliptic equation: $$-div(h(x){\nabla}u)=f(x,u)\;in\;{\Omega}$$ with Dirichlet boundary condition in a bounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, where $h(x){\in}L^1_{loc}({\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2012, 49(4), , pp.737-748
Hauptverfasser: Hang, Trinh Thi Minh, Toan, Hoang Quoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this paper is to study the existence of non-trivial non-negative weak solution for the nonlinear elliptic equation: $$-div(h(x){\nabla}u)=f(x,u)\;in\;{\Omega}$$ with Dirichlet boundary condition in a bounded domain ${\Omega}{\subset}\mathbb{R}^N$, $N{\geq}3$, where $h(x){\in}L^1_{loc}({\Omega})$, $f(x,s)$ has asymptotically linear behavior. The solutions will be obtained in a subspace of the space $H^1_0({\Omega})$ and the proofs rely essentially on a variation of the mountain pass theorem in [12]. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.2012.49.4.737