On the Galerkin-Wavelet method for higher order differential equations

The Galerkin method has been developed mainly for 2nd order differential equations. To get numerical solutions, there are some choices of Riesz bases for the approximation subspace Vj ⊂ L2. In this paper we shall propose a uniform approach to find suitable Riesz bases for higher order differential e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2013, 50(3), , pp.963-982
Hauptverfasser: Naohiro Fukuda, Tomatu Kinoshita, Takatuki Kubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Galerkin method has been developed mainly for 2nd order differential equations. To get numerical solutions, there are some choices of Riesz bases for the approximation subspace Vj ⊂ L2. In this paper we shall propose a uniform approach to find suitable Riesz bases for higher order differential equations. Especially for the beam equation (4-th order equation), we also report numerical results. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.2013.50.3.963