CHARACTERIZATION OF SUZUKI GROUP BY NSE AND ORDER OF GROUP
Let $G$ be a finite group and $\nse(G)$ be the set of numbers of elements of $G$ of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $\nse(Sz(2^{2m+1}))$ and $|Sz(2^{2m+1})|$. KCI Citation Count: 7
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2016, 53(3), , pp.651-656 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be a finite group and $\nse(G)$ be the set of numbers of elements of $G$ of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $\nse(Sz(2^{2m+1}))$ and $|Sz(2^{2m+1})|$. KCI Citation Count: 7 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b140564 |