CHARACTERIZATION OF SUZUKI GROUP BY NSE AND ORDER OF GROUP

Let $G$ be a finite group and $\nse(G)$ be the set of numbers of elements of $G$ of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $\nse(Sz(2^{2m+1}))$ and $|Sz(2^{2m+1})|$. KCI Citation Count: 7

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2016, 53(3), , pp.651-656
Hauptverfasser: Iranmanesh, Ali, Mosaed, Hosein Parvizi, Tehranian, Abolfazl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be a finite group and $\nse(G)$ be the set of numbers of elements of $G$ of the same order. In this paper, we prove that the simple group $Sz(2^{2m+1})$, where $2^{2m+1}-1$ is a prime number, is uniquely determined by $\nse(Sz(2^{2m+1}))$ and $|Sz(2^{2m+1})|$. KCI Citation Count: 7
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b140564