Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO

We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH(2) and tat-CLIO. The hNSCs (5 x 10(5) HB1F3 cells/ml) were incubated fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Korean journal of radiology 2007, 8(5), , pp.365-371
Hauptverfasser: Song, Miyeoun, Moon, Woo Kyung, Kim, Yunhee, Lim, Dongyeol, Song, In-Chan, Yoon, Byung-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH(2) and tat-CLIO. The hNSCs (5 x 10(5) HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 microg/ml of ferumoxides, MION or CLIO-NH(2), and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15+/-0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH(2), respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH(2) into the hNSCs was comparable to that of tat-CLIO. For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH(2) and the transfection agent PLL.
ISSN:1229-6929
2005-8330
DOI:10.3348/kjr.2007.8.5.365