Effects of bending fatigue on the electrical resistance in metallic films on flexible substrates

The increase of electrical resistance during the strain-controlled bending fatigue of 2 μm-thick inkjet-printed or vacuum deposited metallic films (Cu, Ag) on flexible substrates (BT: Bismaleimide Triazine, PI: Polyimide) was investigated. Electrical resistance increased with an increase in the numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals and materials international 2010, 16(6), , pp.947-951
Hauptverfasser: Lee, Ho-Young, Yi, Seol-Min, Lee, Ji-Hoon, Lee, Hwan-Soo, Hyun, Seungmin, Joo, Young-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increase of electrical resistance during the strain-controlled bending fatigue of 2 μm-thick inkjet-printed or vacuum deposited metallic films (Cu, Ag) on flexible substrates (BT: Bismaleimide Triazine, PI: Polyimide) was investigated. Electrical resistance increased with an increase in the number of fatigue cycles. The rate of increase in the electrical resistance of inkjet-printed Cu films was lower than that of thermally evaporated films. This phenomenon is attributable to the porous microstructure of inkjet-printed Cu films. The porous structure contains a lot of free volume and a large area of free surface, which can be a sinking site for vacancies formed during the cyclic deformation. It was confirmed that a smaller grain size leads to a lower rate of increase in the electrical resistance, which was ascribed to the easy vacancy annihilation due to a short diffusion length of the vacancy to the grain boundary which is a vacancy sinking site. The rate of increase in the electrical resistance was also influenced by the grain boundary geometry. The lower rate of the evaporated Ag film on a BT substrate was attributed to the crack-like grain boundaries, which were expected to behave like pores.
ISSN:1598-9623
2005-4149
DOI:10.1007/s12540-010-1213-2