High-rate tensile properties of Si-reduced TRIP sheet steels
There have been efforts to develop Si-reduced TRIP steels to improve the wettability of Zn coatings, since the conventional CMnSi-TRIP steels suffer from poor galvanizability. In addition, for the development of potential applications of Si-reduced TRIP steels in vehicle crash management, a better u...
Gespeichert in:
Veröffentlicht in: | Metals and materials international 2010, 16(1), , pp.27-33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There have been efforts to develop Si-reduced TRIP steels to improve the wettability of Zn coatings, since the conventional CMnSi-TRIP steels suffer from poor galvanizability. In addition, for the development of potential applications of Si-reduced TRIP steels in vehicle crash management, a better understanding of high strain rate properties is required. In the present study, the effects of alloying elements, such as Cu, Al, Si, and P, on the high-rate tensile properties of Si-reduced TRIP sheet steels were investigated. Tensile tests were performed with a servo-hydraulic tensile testing machine at strain rates ranging from 10
−2
to 6 × 10
2
s
−1
, and the ultimate tensile strength, elongation, strain rate sensitivity, and absorbed energy were evaluated. The retained austenite volume fractions and carbon content of the specimens were measured using neutron diffraction. The UTS was increased with Cu, Al, Si, and P alloying throughout the strain rate range, and the alloying effect on UTS was considerable with Cu and P. The effects of alloying on the microstructure were not significant. All the steels tested in this study exhibited positive strain rate sensitivity, and the
m
value at strain rates higher than 10 s
−1
was at least two times higher than that at lower strain rates. |
---|---|
ISSN: | 1598-9623 2005-4149 |
DOI: | 10.1007/s12540-010-0027-6 |