ROS in cancer therapy: the bright side of the moon

Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental & molecular medicine 2020, 52(0), , pp.1-12
Hauptverfasser: Perillo, Bruno, Di Donato, Marzia, Pezone, Antonio, Di Zazzo, Erika, Giovannelli, Pia, Galasso, Giovanni, Castoria, Gabriella, Migliaccio, Antimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells. Cancer: A Trojan horse to kill cancer cells Highly reactive molecules called reactive oxygen species (ROS), which at low levels are natural regulators of important signaling pathways in cells, might be recruited to act as “Trojan horses” to kill cancer cells. Researchers in Italy led by Bruno Perillo of the Institute of Food Sciences in Avelllino review the growing evidence suggesting that stimulating production of natural ROS species could become useful in treating cancer. Although ROS production is elevated in cancer cells it can also promote a natural process called programmed cell death. This normally regulates cell turnover, but could be selectively activated to target diseased cells. The authors discuss molecular mechanisms underlying the potential anti-cancer activity of various ROS-producing strategies, including drugs and light-stimulated therapies. They expect modifying the production of ROS to have potential for developing new treatments.
ISSN:1226-3613
2092-6413
DOI:10.1038/s12276-020-0384-2