Applications of differential subordinations to certain classes of starlike functions

Let $p$ be an analytic function defined on the open unit disk $\mathbb{D}$. We obtain certain differential subordination implications such as $\psi(p):=p^{\lambda}(z)(\alpha+\beta p(z)+\gamma/p(z)+\delta z p'(z)/p^{j}(z)) \prec h(z)$ $(j=1,2)$ implies $p \prec q$, where $h$ is given by $\psi(q)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2020, 57(2), , pp.331-357
Hauptverfasser: Shagun Banga, S. SIVAPRASAD KUMAR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $p$ be an analytic function defined on the open unit disk $\mathbb{D}$. We obtain certain differential subordination implications such as $\psi(p):=p^{\lambda}(z)(\alpha+\beta p(z)+\gamma/p(z)+\delta z p'(z)/p^{j}(z)) \prec h(z)$ $(j=1,2)$ implies $p \prec q$, where $h$ is given by $\psi(q)$ and $q$ belongs to $\mathcal{P}$, by finding the conditions on $\alpha$, $\beta$, $\gamma$, $\delta$ and $\lambda$. Further as an application of our derived results, we obtain sufficient conditions for normalized analytic function $f$ to belong to various subclasses of starlike functions, or to satisfy $|\log(z f'(z)/f(z))|
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j190051