쥐의 척수강 내로 투여한 고려 홍삼의 항통각효과에 대한 아드레날린성 및 콜린성 수용체 역할

Background: Experimental evidence indicates that ginseng modulate the nociceptive transmission. Authors examined the role of adrenergic and cholinergic receptors on the antinociceptive action of Korean red ginseng against the formalin-induced pain at the spinal level. Methods: Catheters were inserte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Korean journal of pain 2008, 21(1), , pp.27-32
Hauptverfasser: 김세열, Se Yeol Kim, 윤명하, Myung Ha Yoon, 이형곤, Hyung Gon Lee, 김웅모, Woong Mo Kim, 이재담, Jae Dam Lee, 김여옥, Yeo Ok Kim, 황란희, Lan Ji Huang, 최금화, Jin Hua Cui
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Experimental evidence indicates that ginseng modulate the nociceptive transmission. Authors examined the role of adrenergic and cholinergic receptors on the antinociceptive action of Korean red ginseng against the formalin-induced pain at the spinal level. Methods: Catheters were inserted into the intrathecal space of male Sprague-DawIey rats. Fifty ${\mu}l$ of 5% formalin solution was injected to the hindpaw for induction of pain and formalin-induced pain (flinching response) was observed. The role of spinal adrenergic and cholinergic receptors on the effect of Korean red ginseng was assessed by antagonists (Prazosin, yohimbine, atropine and mecamylamine). Results: Intrathecal Korean red ginseng produced a dose-dependent suppression of the flinching response in the rat formalin test. All of prazosin, yohimbine, atropine and mecamylamine antagonized the antinociception of Korean red ginseng. Conclusions: Spinal Korean red ginseng is effective against acute pain and facilitated pain state evoked by formalin injection. All of alpha 1, alpha 2, muscarinic and nicotinic receptors may play an important role in the antinociceptive action of Korean red ginseng at the spinal level.
ISSN:2005-9159
1226-2579
2093-0569