Total domination number of central trees
Let $\gamma_{t}(G)$ and $\tau(G)$ denote the total domination number and vertex cover number of graph $G$, respectively. In this paper, we study the total domination number of the central tree $C(T)$ for a tree $T$. First, a relationship between the total domination number of $C(T)$ and the vertex c...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2020, 57(1), , pp.245-250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\gamma_{t}(G)$ and $\tau(G)$ denote the total domination number and vertex cover number of graph $G$, respectively. In this paper, we study the total domination number of the central tree $C(T)$ for a tree $T$. First, a relationship between the total domination number of $C(T)$ and the vertex cover number of tree $T$ is discussed. We characterize the central trees with equal total domination number and independence number. Applying the first result, we improve the upper bound on the total domination number of $C(T)$ and solve one open problem posed by Kazemnejad et al.. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b190162 |