Total domination number of central trees

Let $\gamma_{t}(G)$ and $\tau(G)$ denote the total domination number and vertex cover number of graph $G$, respectively. In this paper, we study the total domination number of the central tree $C(T)$ for a tree $T$. First, a relationship between the total domination number of $C(T)$ and the vertex c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2020, 57(1), , pp.245-250
Hauptverfasser: Xue-gang Chen, 손무영, Yu-Feng Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\gamma_{t}(G)$ and $\tau(G)$ denote the total domination number and vertex cover number of graph $G$, respectively. In this paper, we study the total domination number of the central tree $C(T)$ for a tree $T$. First, a relationship between the total domination number of $C(T)$ and the vertex cover number of tree $T$ is discussed. We characterize the central trees with equal total domination number and independence number. Applying the first result, we improve the upper bound on the total domination number of $C(T)$ and solve one open problem posed by Kazemnejad et al.. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b190162