혼합모드 잠재범주모형을 통한 텍스트 자료의 분석

일종의 혼합다항분포 모형이라고 볼 수 있는 잠재범주모형은 범주형 자료에서 직접 관측되지 않은 중요한 정보를 얻어낼 수 있는 유용한 도구이다. 하지만 자료에 범주형 변수 뿐 아니라 연속형 변수 혹은 빈도형 변수가 함께 포함되어 있을 경우 이 모형을 직접적으로 사용할 수 없다. 본 논문에서는 특히 범주형 변수와 빈도형 변수가 함께 포함되어 있는 경우에 잠재범주모형인 혼합모드 잠재범주모형을 사용하여 텍스트 후기와 범주형 응답문항이 모두 포함된 의약품 사용 후기자료를 분석하였다. 이 분석을 통해 범주형 응답만을 사용한 보통의 잠재범주 모형...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2019, 32(6), , pp.837-849
Hauptverfasser: 신현수, Hyun Soo Shin, 서병태, Byungtae Seo
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:일종의 혼합다항분포 모형이라고 볼 수 있는 잠재범주모형은 범주형 자료에서 직접 관측되지 않은 중요한 정보를 얻어낼 수 있는 유용한 도구이다. 하지만 자료에 범주형 변수 뿐 아니라 연속형 변수 혹은 빈도형 변수가 함께 포함되어 있을 경우 이 모형을 직접적으로 사용할 수 없다. 본 논문에서는 특히 범주형 변수와 빈도형 변수가 함께 포함되어 있는 경우에 잠재범주모형인 혼합모드 잠재범주모형을 사용하여 텍스트 후기와 범주형 응답문항이 모두 포함된 의약품 사용 후기자료를 분석하였다. 이 분석을 통해 범주형 응답만을 사용한 보통의 잠재범주 모형에 비해 텍스트 자료를 함께 사용한 혼합모드 잠재범주모형을 사용했을때 잠재범주에 대한 보다 자세한 정보를 얻을 수 있는 것을 확인하였다. Latent class models (LCM) are useful tools to draw hidden information from categorical data. This model can also be interpreted as a mixture model with multinomial component distributions. In some cases, however, an available dataset may contain both categorical and count or continuous data. For such cases, we can extend the LCM to a mixture model with both multinomial and other component distributions such as normal and Poisson distributions. In this paper, we consider a LCM for the data containing categorical and count data to analyze the Drug Review dataset which contains categorical responses and text review. From this data analysis, we show that we can obtain more specific hidden inforamtion than those from the LCM only with categorical responses.
ISSN:1225-066X
2383-5818