Liver dose reduction by deep inspiration breath hold technique in right-sided breast irradiation

Deep inspiration breath hold (DIBH) is a well-established technique that enables efficient cardiac sparing in patients with left-sided breast cancer. The aim of the current study was to determine if DIBH is effective for reducing radiation exposure of of liver and other organs at risk in right breas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation oncology journal 2019, 37(4), , pp.254-258
Hauptverfasser: Haji, Gunel, Nabizade, Ulviye, Kazimov, Kamal, Guliyeva, Naile, Isayev, Isa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep inspiration breath hold (DIBH) is a well-established technique that enables efficient cardiac sparing in patients with left-sided breast cancer. The aim of the current study was to determine if DIBH is effective for reducing radiation exposure of of liver and other organs at risk in right breast radiotherapy (RT). Twenty patients with right-sided breast cancer were enrolled in this study. Three-dimensional conformal RT plans were generated for each patient, with two different computed tomography scans of free breathing (FB) and DIBH. Nodes were contoured according to the Radiation Therapy Oncology Group contouring guidelines. Dose-volume histograms for the target volume coverage and organs at risk were evaluated and analyzed. DIBH plans showed significant reduction in mean liver dose (5.59 ± 2.07 Gy vs. 2.54 ± 1.40 Gy; p = 0.0003), V20Gy (148.38 ± 73.05 vs. 64.19 ± 51.07 mL; p = 0.0003) and V10Gy (195.34 ± 93.57 vs. 89.81 ± 57.28 mL; p = 0.0003) volumes compared with FB plans. Right lung doses were also significantly reduced in DIBH plans. Heart and left lung doses showed small but statistically significant improvement with application of the DIBH technique. We report that the use of DIBH for right-sided breast cancer significantly reduces the radiation doses to the liver, lungs, and heart.
ISSN:2234-1900
2234-3156
2234-3164
DOI:10.3857/roj.2019.00206